
“Digital Design and Boolean Algebra”

Dr. Cahit Karakuş, February-2019

Analogue and Digital Signals

How is data represented inside the computer?

• Inside the computer, data is represented as a sequence of 1s and 0s.

• Since data in the computer system is represent as digital signals (bit: 1/0) while arithmetic and logical
operations are performed, stored in memories, and transferred between relevant units, so analog
signals must be converted into digital signals.

• Signals spread far away in the form of waves. Waves carry messages in signals.

• Signals: Acoustic signals, Seismic Signals, Electrical signals, Electromagnetic signals, Heat, Vibration, ...

• Messages/Symbols: Numbers (positive, negative, integer, float, fraction), Characters, Texts, Picture,
Image, Keyboard keys

• Analog signals: These are signals whose amplitude, frequency and phase change over time.
X(t)=A(t)*Sin(wt+φ(t));

• w=2πf, f: frequency (Hz=1/sec), φ: phase (degrees or radians), A: Amplitude (unit, volt, ampere)

Classification of signals

Signals are basically classified into two different
types as follows.

Continuous time signals, Analog signals

Discrete (Ayrık) time signals: It is the name
given to the output signal obtained by
measuring the input value at certain intervals
or levels. The discrete-time signal is derived
from the input signal by the sampling process.
Samples taken from the discrete-time signal are
converted into a digital signal by quantization.

4

5

Analog to Binary Signal

• A voltage below the threshold
• Off (0)

• A voltage above the threshold
• On (1)

Analogue and Digital Signals

• Calculation with numbers is usually done in base 10 arithmetic

• Easier to effect machine computation in base 2 or binary notation

• We can also use base 2 or binary notation to represent logic values: TRUE
and FALSE

• Manipulation of these (digital) logic values is subject to the laws of logic as
set out in the formal rules of Boolean algebra

• An analogue signal can have any value within certain operating limits

• For example, in a (common emitter) amplifier, the output (O/P) can have
any value between 0v and 10v.

• A digital signal can only have a fixed number of values within certain
tolerances

Analogue Signals

• The amplitude is defined at all moments in time

First step of sampling: Obtain a discrete signal from
analogue signal

• It is a sampled version of the analogue signal

• Only defined at certain discrete times

• DISCRETE TIME SIGNAL

• A digital signal is a sampled version of the analogue signal

• Analog signal sampling interval=1/fmax, [sec]. Here fmax=maximum frequency of the
analog signal.

The second step of sampling: Quantization
• The amplitude may also be restricted to take on discrete values only

• In which case it is said to be quantized

• Every level of amplitute represent 8 bits binary numbering system.

• There are 2^8 levels in an analogue signal.

• Quantization introduces errors which depend on the step size or the resolution

• Signals (voltages or currents) which are samples and quantized are said to be DIGITAL

• They can be represented by a sequence of binary numbers

• The messages produced by all the components that make up the universe are transmitted via analog
signals; In this way, they are in interactive communication with each other.

• While the analog signal is converted into a digital signal, samples are taken from the amplitude and
phase values at certain time intervals (sampling frequency). This process is called the sampling function.
When sampling, the sampling frequency must be greater than or equal to twice the maximum frequency
of the analog signal.

• An analog signal has a lot of frequencies. Also, there are maksimum and minumum frequency.
Bandwidth, BW: fmax – fmin. Sampling frequency, fs >= 2* BW >= fmax

• The values of the samples taken from the analog signal are assigned to discrete values within the
amplitude scaling range. This process is called quantization. During this assignment process,
quantization errors occur depending on the sampling time interval, quantization values, translation and
resolution.

• Representing discrete values with a certain number of binary number systems is called encoding in the
binary number system. Each discrete amplitude value is represented by a certain number of binary (0/1)
numbers. Thus, digital signals are obtained. For example, 8 bit can be taken.

The third step of sampling: Encoding

Digitization of analog signal

• The values of the samples taken from the analog signal are assigned to discrete values in the amplitude scaling
range. This process is called quantization. During this assignment process, quantization errors occur depending on
the sampling time interval, quantization values, translation and resolution.Representing discrete values with a
certain number of binary number systems is called encoding in the binary number system. Each discrete amplitude
value is represented by a certain number of binary (0/1) numbers. Thus, digital signals are obtained.

Binary Systems 12

Noise on Transmission
• When the signal is transferred it will pick up noise from the environment

• Even when the noise is present the binary values are transmitted without error

• Recovery - Filtering

Nyquist Sampling Theorem

When an analog signal is converted to digital signal and trasfered then converted back to an analog
signal, how can obtain the same analog signal. The sampling frequency must be equal to or greater than
wice the bandwidth of the signal in order to obtain the same signal.

fs ≥ 2*fmax, if fmin=0
fs ≥ 2*BW

• Here fs is the sampling frequency and fmax is the maximum frequency in the signal; BW is the bandwidth
of signal. BW=fmax – fmin.

• Frequency is the number of periods in one second in an analogue sigal. Frequency is also the number of
vibration in an one second. f=1/T. T: period [second], f: frequency [Hz=1/second]In telephone
communication, bandwidth is B= 4KHz (Understanding, Recognition, Feeling) and fs=2*B. Then the
sampling interval is T=1/8KHz=125microseconds.

Example
• F1=4KHZ, f2=3200Hz, f3=6KHz, f4=200Hz, f5=8KHz, f6=10KHz

• Find bandwidth (BW), find fmin and fmax. Note: you must conert all units to basic unit.

• F1=4000Hz

• F2=3200Hz

• F3=6000Hz

• F4=200Hz

• F5=8000Hz

• F6=10000Hz

• Fmin=f4=200Hz

• Fmax=10000Hz

• BW=fmax-fmin=10000Hz-200Hz=9800Hz

The Sampling
• Sampling is converting a continuous time signal into a discrete time signal

• Sampling is usually done at equal time intervals; This interval is called the sampling interval. The
reciprocal of the sampling interval is called sampling frequency or sampling rate. The unit of sampling
rate is Hz.

• In accordance with the sampling theorem, telephone voice signals frequency ranges from 300 Hz to
3400 Hz. It is taken as 4KHz, the sampling frequency is taken as greater than or equal to 8000 Hz.

• If 8000 samples are taken from an analog signal at equal intervals per second and one sample is
represented by 8 bits, how many bits are taken per second? 8000 x 8=64 000 bit/sec=64Kbit/sec.

• Minimum capacity of a channel in data communication = 64Kbit/s.

• If each sample is represented by 8 bits, the number of sampling intervals (Quantization) is 28 = 256.

• 256 quantization ranges (layers) are obtained.

• After the sound waves are converted to an analog signal, a sample is taken at 125 μsec. Sampling
interval, T=1/8000= 0.000125 sec. = 125 µs, where T is the sampling interval.

Ideal Sampling and Aliasing

• Sampled signal is discrete in time domain with spacing Ts

• Spectrum will repeat for every fs Hz

• Aliasing (spectral overlapping – Loss of an analog signal within another analog signal) if fs
is too small (fs < 2fm)

• Nyquist sampling rate fs = 2fm

• Generally oversampling is done fs > 2fm

Lifecycle from Sound to Digital to
Sound

Source: http://en.wikipedia.org/wiki/Digital_audio

Digital Design and Boolean Algebra

Fundamentals of Digital Logic
• A binary number system is used to represent digital logic values: 1/0 (True/False, Good/Bad, Day/Night,

0V/5V)

• Mathematical operations of digital logic values are governed by the laws specified in the rules of Boolean
algebra.

• The mathematical inputs and outputs of the laws specified in the rules of Boolean algebra are represented
by the binary number (1/0) system.

• Logical gates that make up the hardware of computer systems

• AND, OR, NOT, NAND, NOR, XOR, …

• Logic gates are created using transistors.

• NOT gate can be implemented by a single transistor

• AND gate requires 3 transistors

• Transistors are the basic circuit elements of computer systems.

• Pentium consists of 3 million transistors

• Compaq Alpha consists of 9 million transistors

• Now we can build chips with more than 100 million transistors

Design Hierarchy
Many digital systems can be divided into three design levels that form a well-defined
hierarchy:

• The Architecture Level: High-level concerned with overall system management

• The Logic Level: Intermediate level concerned with the technical details of the system

• The Physical Level: Low level concerned with the details needed to manufacture or
assemble the system

• We have already studied the architecture level

• Now we will address the logic level

• At the logic level, there are two classes of digital system
• Combinational - digital systems without memory

• Sequential - digital systems with memory

Boolean Algebra (Mantıksal devre)

Aa logic variable x can have only one of two possible values or states

• x = TRUE

• x = FALSE

In binary notation, we can say

• x = TRUE = 1

• x = FALSE = 0

• This is called positive logic or high-true logic

Electrically, – 1 is represented by a more positive voltage than zero and – 0 is represented by zero volts

• x = TRUE = 1 = 5 volts

• x = FALSE = 0 = 0 volts

Boolean Algebra

• Sayı sistemi, ikili olduğundan tüm değişkenler 0 ya da 1 değerini alır.

• Ve (*), veya (+), değil (tersi) kavramları üzerine oturmaktadır. Aritmetiksel işlem yoktur.

• Veya
• 0 veya (+) 0=0
• 1 veya (+) 0=1
• 0 veya (+) 1=1
• 1 veya (+) 1=1

• Ve
• 0 ve (*) 0 = 0
• 0 ve (*) 1 = 0
• 1 ve (*) 0 = 0
• 1 ve (*) 1 = 1

• Değil
• 0 tersi 1
• 1 tersi 0

Boolean Algebra Theorems
1. a) 𝑎+𝑏=𝑏+𝑎 Commutativity

𝑏) 𝑎∙𝑏=𝑏∙𝑎

2. a) 𝑎+𝑏+𝑐=𝑎+(𝑏+𝑐) Merger Feature (Birleşme)

𝑏) 𝑎∙𝑏∙𝑐=𝑎∙(𝑏∙𝑐)

3. a) 𝑎+𝑏∙𝑐= (𝑎+𝑏) ∙(𝑎+𝑐) Dispersion Feature (Dağılma)

𝑏) 𝑎∙(𝑏+𝑐)= 𝑎∙𝑏 + 𝑎∙𝑐

c) a(b+c)=ab+ac

4. a) 𝑎+𝑎=𝑎 Idempotency(Değişkende Fazlalık Özelliği)

𝑏) 𝑎∙𝑎=𝑎

5. a) 𝑎+𝑎.𝑏=𝑎 Swallowing Feature (Yutma)

𝑏) 𝑎∙(𝑎+𝑏)=𝑎

6. a) (𝑎)^n =𝑎 Redundancy Feature in transaction (işlemde
Fazlalık Özelliği)

𝑏) (𝑎 x n) =𝑎

7. a) (𝑎 + 𝑏)=ത𝑎∙ത𝑏 De Morgan Rule

𝑏) (𝑏)= + ത𝑏

8. a) 0+𝑎=𝑎 Ineffectiveness Feature (Etkisizlik Özelliği)

𝑏) 1∙𝑎=𝑎

9. a) 𝑎+ത𝑎 =1 Fixed Feature (Sabit Özelliği)

𝑏) 𝑎∙ത𝑎 =0

10. a) 1+𝑎=1 Devourer Fixed Feature (Yutan Sabit
Özelliği)

𝑏) 0∙𝑎=0

11. a) (𝑎+𝑏)∙𝑏=𝑎∙𝑏

𝑏) 𝑎∙𝑏 +𝑏=𝑎+𝑏

12. a) 𝑎+𝑏 ∙ 𝑎 +𝑐 ∙ 𝑏+𝑐 = 𝑎+𝑏 ∙(𝑎 +𝑐)

) 𝑏) 𝑎∙𝑏+𝑎 ∙𝑐+𝑏∙𝑐=𝑎∙𝑏+𝑎 ∙𝑐

13. a) 𝑎+𝑏 ∙ 𝑎 +𝑐 =𝑎∙𝑐+𝑎 ∙𝑏

𝑏) 𝑎∙𝑏+𝑎 ∙𝑐= 𝑎+𝑐 ∙(𝑎 +𝑏)

14. a) 𝑓 𝑎,𝑏,𝑐,𝑑,⋯ =[𝑎+𝑓(0,𝑏,𝑐,𝑑,⋯)]∙[𝑎 +𝑓(1,𝑏,𝑐,𝑑,⋯)]
Shannon Teoremi

𝑏) 𝑓 𝑎,𝑏,𝑐,𝑑,⋯ = 𝑎∙𝑓 1,𝑏,𝑐,𝑑,⋯ +[𝑎 ∙𝑓(0,𝑏,𝑐,𝑑,⋯)]

Rules and Laws of Boolean Algebra
• Operations on Boolean variables are defined by rules and laws, the most important of which

are presented here

• Commutative Law

A . B = B . A

A + B = B + A

• This states that the order of the variables is unimportant

• Associative Law
A . (B . C) = A . (B . C)

A + (B + C) = A + (B + C)

• This states that the grouping of the variables is unimportant

• Distributive Law: A . (B + C) = A . B + A . C

• This states that we can remove the parenthesis by ‘multiplying through’

• The above laws are the same as in ordinary algebra, where ‘+’ and ‘.’ are interpreted as
addition and multiplication

Rules and Laws of Boolean Algebra
• Basic rules involving one variable:

A + 0 = A A . 0 = 0

A + 1 = 1 A . 1 = A

A + A = A A . A = A

A + A’ = 1 A . A’ = 0

• It should be noted that A’’ = A

• An informal proof of each of these rules is easily accomplished by taking advantage of the fact
that the variable can have only two possible values

• For example, rule 2: A + 1 = 1

If A = 0 then 0 + 1 = 1

If A = 1 then 1 + 1 = 1

Rules and Laws of Boolean Algebra

Basic rules of single variable

• A proof of each of the rules and laws of Boolean algebra can be easily proved by taking
advantage of the fact that a variable can only have two bits (0/1) of value.

• Note: A=0 or 1.

• A +A+A+A+A....+A+ 1 = 1 ; In the OR gate, if any of the inputs is 1, the output is one. The
other method of proof is to search for accuracy by giving values of 1 and 0.

• A+A+A+ ... + A=A (Why? Bivariate 0 or 1 inputs are available)

• AAA ... A=A

– If A = 0 then 0 + 1 = 1

– If A = 1 then 1 + 1 = 1

Rules and Laws of Boolean Algebra

In logic circuits and mathematics, there are two numbers: 0 and 1.
Question: Perform the following operation using Boolean algebra. A=9, A+1=?
a)0 b)1 c)10 d) 8 e)none
Question: What values does A take in Boolean algebra?
a) 0 b)1 c) 0/1 d) 0,1,2, …, 9 d)Any value e)No value
Question: If A=1 in Boolean algebra, A+A+A+A+A=?
A)1 B)0 C)A D)5 D)5A E) None
Question: In Boolean Algebra, A*A*A*A=? A)A B)A^4

DeMorgan’s Laws

Rules and Laws of Boolean Algebra

De Morgan's Laws are particularly useful when dealing with NAND and NOR logic.

Some useful theorems

• A+A.B=A.(1+B)=A, 1+B=1

• A+A’.B=(A+A’).(A+B)=A+B, A+A’=1

• A.B+AB’=A(B+B’)=A, B+B’=1

• A.(A+B)=A.A+AB=A+AB=A(1+B)=A, A.A=A, 1+B=1

• A(A’+B)=A.A’+AB=AB;A.A’=0

• (A+B)(A+B’)=AA+AB’+AB+BB’=A+AB’+AB=A(1+B+B’)=A; A.A=1, B.B’=0, 1+B+B’=1

• A + A’.B = A+B

The result of logical operations is always 1 or 0.

• a + a + a + a + + a =a

• a*a*a* *a =a

• 1+a+b+c+ ... + z=1

• ab’c + ab’c=ab’c; The sum of similar expressions always equals a
similar one.

Boolean Algebra
• Developed by George Boole in 19th Century

• Algebraic representation of logic
• Encode “True” as 1 and “False” as 0

And

 A&B = 1 when both A=1 and B=1

& 0 1

0 0 0

1 0 1

~

0 1

1 0

Not

 ~A = 1 when A=0

Or

 A|B = 1 when either A=1 or B=1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

Exclusive-Or (Xor)

 A^B = 1 when either A=1 or B=1, but not

both

Gates and Transistors

(a) A transistor inverter.

(b) A NAND gate.

(c) A NOR gate.

VCE=VCC kesme durumunda

Transistor is a circuit element produced in semiconductor
technology that controls the flow of electrons.

Transistor

• Semiconductor circuit element that controls the flow of electrons.
• Subatomic particles (Quantum Mechanics): Proton, Neutron, Electron, Phototron
• Current is created from the flow of electrons.
• The transistor memory element stores the bit (0/1) state on it. Performs Switching. Or

it strengthens the signal.
• Transistor is the most used electronic circuit element in the world.
• The smallest basic electronic circuit element of a microprocessor is the transistor.
• The CPU's basic function cycles occur at a dizzying speed as transistors turn on and off

millions or even billions of times per second..

Gates

Digital Logic Basics
• Hardware consists of a few simple building blocks

• These are called logic gates

• AND, OR, NOT, …

• NAND, NOR, XOR, …

• Logic gates are built using transistors

• NOT gate can be implemented by a single transistor

• AND gate requires 3 transistors

• Transistors are the fundamental devices

• Pentium consists of 3 million transistors

• Compaq Alpha consists of 9 million transistors

• Now we can build chips with more than 100 million transistors

Temel Kavramlar -1

• Number of functions
• With N logical variables, we can define

22N
functions

• Some of them are useful
• AND, NAND, NOR, XOR, …

• Some are not useful:
• Output is always 1

• Output is always 0

• “Number of functions” definition is useful in proving completeness
property

Temel Lojik Kapılar -1

• Simple gates

• AND

• OR

• NOT

• Functionality can be expressed by a truth table

• A truth table lists output for each possible
input combination

• Precedence

• NOT > AND > OR

• F = A B + A B

= (A (B)) + ((A) B)

Temel Lojik Kapılar -2

• Additional useful gates

• NAND

• NOR

• XOR

• NAND = AND + NOT

• NOR = OR + NOT

• XOR implements exclusive-OR function

• NAND and NOR gates require only 2
transistors

• AND and OR need 3 transistors!

Basic Logic Functions

True only if all input conditions are

true.

True only if one or more input

conditions are true.

Indicates the opposite condition.

Basic System Functions

And, or, and not elements can be combined to form various logic

functions. A few examples are:

The comparison function

Basic arithmetic functions
Adder

Two
binary
numbers

Carry out

A

B
Cout

CinCarry in

SumΣ

Two
binary
numbers

Outputs

A

B
A < B

A = B

A > B

Comparator

Logic Functions

• Logical functions can be expressed in several ways:
• Truth table

• Logical expressions

• Graphical form

• Example:
• Majority function

• Output is one whenever majority of inputs is 1

• We use 3-input majority function

Logic Functions
3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Logical expression form

F = A B + B C + A C

Boole Cebri Teoremleri

1. a) 𝑎+𝑏=𝑏+𝑎 Değişme Özelliği

𝑏) 𝑎∙𝑏=𝑏∙𝑎

2. a) 𝑎+𝑏+𝑐= 𝑎+𝑏 +𝑐=𝑎+(𝑏+𝑐) Birleşme Özelliği

𝑏) 𝑎∙𝑏∙𝑐= 𝑎∙𝑏 ∙𝑐=𝑎∙(𝑏∙𝑐)

3. a) 𝑎+𝑏∙𝑐= 𝑎+𝑏 ∙(𝑎+𝑐) Dağılma Özelliği

𝑏) 𝑎∙ 𝑏+𝑐 = 𝑎∙𝑏 +(𝑎∙𝑐)

c) a(b+c)=ab+ac

4. a) 𝑎+𝑎=𝑎 Değişkende Fazlalık Özelliği

𝑏) 𝑎∙𝑎=𝑎

5. a) 𝑎+𝑎.𝑏=𝑎 Yutma Özelliği

𝑏) 𝑎∙(𝑎+𝑏)=𝑎

6. a) (𝑎) =𝑎 işlemde Fazlalık Özelliği

𝑏) (𝑎) =𝑎

7. a) (𝑎+𝑏+𝑐+⋯) =𝑎 ∙𝑏 ∙𝑐 ∙⋯ De Morgan Kuralı

𝑏) (𝑎∙𝑏∙𝑐∙⋯) =𝑎 +𝑏 +𝑐 +⋯

8. a) 𝑎+𝑎 =1 Sabit Özelliği

𝑏) 𝑎∙𝑎 =0

9. a) 0+𝑎=𝑎 Etkisizlik Özelliği

𝑏) 1∙𝑎=𝑎

10. a) 1+𝑎=1 Yutan Sabit Özelliği

𝑏) 0∙𝑎=0

11. a) (𝑎+𝑏)∙𝑏=𝑎∙𝑏

𝑏) 𝑎∙𝑏 +𝑏=𝑎+𝑏

12. a) 𝑎+𝑏 ∙ 𝑎 +𝑐 ∙ 𝑏+𝑐 = 𝑎+𝑏 ∙(𝑎 +𝑐)

𝑏) 𝑎∙𝑏+𝑎 ∙𝑐+𝑏∙𝑐=𝑎∙𝑏+𝑎 ∙𝑐

13. a) 𝑎+𝑏 ∙ 𝑎 +𝑐 =𝑎∙𝑐+𝑎 ∙𝑏

𝑏) 𝑎∙𝑏+𝑎 ∙𝑐= 𝑎+𝑐 ∙(𝑎 +𝑏)

14. a) 𝑓 𝑎,𝑏,𝑐,𝑑,⋯ =[𝑎+𝑓(0,𝑏,𝑐,𝑑,⋯)]∙[𝑎
+𝑓(1,𝑏,𝑐,𝑑,⋯)] Shannon Teoremi

𝑏) 𝑓 𝑎,𝑏,𝑐,𝑑,⋯ = 𝑎∙𝑓 1,𝑏,𝑐,𝑑,⋯ +[𝑎
∙𝑓(0,𝑏,𝑐,𝑑,⋯)]

46 / 28

Standard Forms
• Sum of Products (SOP)

ABCCBACBACBAF

AC

BBAC

)(

CB

AACB

)(

BA

BA

CCBA

)1(

)(

)()()(BBACCCBAAACBF

ACBACBF

47

Boolean Algebra

• We can use Boolean identities to simplify the function:

as follows:

Logic simplification
• Example:
• Z = A'BC + AB'C' + AB'C + ABC' + ABC

= A'BC + AB'(C’ + C) + AB(C' + C) distributive
= A'BC + AB’ + AB complementary
= A'BC + A(B' + B) distributive
= A'BC + A complementary

= BC + A absorption #2 Duality

(X •Y')+Y=X+Y with X=BC and Y=A

Sequential Logic

• Has memory; the circuit stores the result of the previous set of inputs.
The current output depends on inputs in the past as well as present
inputs.
o The basic element in sequential logic is the bistable latch or flip-flop, which acts

as a memory element for one bit of data.

Logic Gates

Temel Lojik Kapılar -1

• Simple gates

• AND

• OR

• NOT

• Functionality can be expressed by a truth table

• A truth table lists output for each possible
input combination

• Precedence

• NOT > AND > OR

• F = A B + A B

= (A (B)) + ((A) B)

Symbols and functional behavior for Logic Gates

AND Gate: If any of the inputs is 0, the output is 0. If all inputs are 1, the output is 1.

OR Gate: If any of the inputs is 1, the output is 1. If all inputs are 0, the output is 0.

NOT Gate: transposes the input.

A logic gate is an idealized or physical circuit that implements a Boolean function, that is, it performs
a logical operation on one or more logic inputs and produces a single logic output.

Logic AND Gates
• Logic gates are switching circuits that perform certain simple operations on binary signals

• These operations are chosen to facilitate the implementation of useful functions
• The AND Gate - Determine the output waveform when the input waveforms A and B

are applied to the two inputs of an AND gate
• A and B are variables and note the use of the . to denote AND
• Giriş dalga formları A ve B bir mantık kapısının iki girişine uygulandığında çıkış dalga

formu belli ise bu kapının türünü belirleyiniz. (AND Kapısı)

Logic OR Gates

• A and B are variables and note the use of the + to denote OR

Logic NOT Gates

• Note the use of the bar over the A to denote NOT

Logic Gates
• Sometimes a ‘bubble’ is used to indicate Inversion

• In fact it is simpler to manufacture the combination NOT AND and NOT OR than it is to deal
with AND and OR

• NOT AND becomes NAND

• NOT OR becomes NOR

Logic Gates

XOR gates are used in comparison and arithmetic addition operations.If all inputs are equal (0 or 1) and the output is zero, it
is an XOR gate; if the output is 1, it is an XNOR gate.

Toplama Karşılaştırma

The XOR – XNOR Gates

Örnek:

• Sound the alarm when A=1 and B=1 or C=1 and D=1.

F=AB+CD

In case of AB: m12, m13, m14, m15In case of CD: m3,m7,m11, m15

Logic Functions

Truth Table: 3-input majority function

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Logical expression form

F=A’BC+AB’C+ABC’+ABC

F = A B + B C + A C

• Logical functions can be expressed
in several ways:
– Truth Table

– Logical Expression

– Impression

• The sum of the variables in the
given equations gives the number
of inputs.

• In logic gates, the result of a
logical equation is 1 or 0.

If the number of entries is m, how many different states are there? There are
S=2^m states. The reason why it has base 2 is due to the binary number system: 0
or 1, bit

Tam toplayıcı (Full Adder)
• It is a combinational circuit where the carry bit at the input is added together

with two one-bit numbers.

MULTIPLEXER
4-to-1 Multiplexer

I0

I1

I2

I3

S0

S1

Y

0 0 I0
0 1 I1
1 0 I2
1 1 I3

Select Output
S1 S0 Y

Multiplexers

Example chip: 8-to-1 MUX

Multiplexers
An eight-input multiplexer circuit.

Demultiplexer (DeMUX)

1-2 Decoder

2-to-4 Decoder

3-to-8 Decoder
• Decoding circuit is used to select

memory.

Decoders

• Decoder selects one-out-of-N inputs

Comparators
A simple 4-bit comparator.

Used to implement comparison operators (= , > , < , ,)

Sıralı Mantık (Sequential Logic)

• Sequential logic has memory; The circuit stores the result of the
previous set of inputs. The output depends on current inputs as well
as past inputs.

• The basic element in sequential logic is the two-state latch or flip-flop
circuit that serves as the memory element for one bit of data.

Sequential Logic (Bellek özelliğine sahiptir.)

It is triggered by the rising edge of the Clok and the output takes the input value. Its state
does not change until the next clok rising edge arrives. This is called memory feature.

The D flip-flop
• Input sampled at clock edge

• Rising edge: Input passes to output
• Otherwise: Flip-flop holds its output

• Flip-flops can be rising-edge triggered or falling-edge triggered

• On the rising edge of the clok signal, the output becomes equal to
the input (Q=D). In all other cases of the clok signal, the output
remains unchanged.

• The current state (Q) and the next state (D) are considered
together.

D Q

Q

CLK

Input

CLK

D

Qff

State Diagram

 The number of binary circuits is found
according to the current and next states

 Number of pairs = 3 pieces. Because in the
State diagram, all states vary between 0 and 7.
Total number of states = 8 = 2^3.

 The current states are found at the Q outputs
of the D-binary circuit. The next situation is at
the D inputs of the D-binary circuit.

 When the D-binary circuit is triggered by the
rising edge of the Clok, the Q-outputs become
equal to the D-inputs.

Creating the State Table and reducing it with the help of Karnaugh diagram

• D2 = Q2Q1’ + Q2Q0’ + Q1Q0C

• D1 = Q2Q1Q0’C’ + Q2’Q1Q0’C + Q2’Q1’Q0C + Q2Q1’Q0C’

• D0 = Q2’Q0’C’ + Q2Q0’C

Current situation Next situation

SUMMARY
• A binary number is a weighted number in which the weight of each whole number digit is a positive power of 2

and the weight of each fractional digit is a negative power of 2.

• The 1’s complement of a binary number is derived by changing 1s to 0s and 0s to 1s

• The 2’s complement of a binary number can be derived by adding 1 to the 1’s complement.

• The octal number system consists of eight digits, 0 through 7.

• The hexadecimal number system consists of 16 digits and characters, 0 through 9 followed by A through F.

• The ASCII is a 7-bit alphanumeric code that is widely used in computer systems for input/output of information.

• The output of an inverter is the complement of its input

• The output of an AND gate is high only if all the inputs are high

• The output of an OR gate is high if any of the inputs is high

• The output of an NOR gate is low if any of the inputs is high

• The output of an NAND gate is low only if all the inputs are high

• The output of an exclusive-OR gate is high when the inputs are not the same

