;s\\ /fzi(

=

7 A
&

%/K\\\(x

“Digital Design and Boolean Algebra”

Dr. Cahit Karakus, February-2019

Analogue and Digital Signals

How is data represented inside the computer?

Inside the computer, data is represented as a sequence of 1s and Os.

Since data in the computer system is represent as digital signals (bit: 1/0) while arithmetic and logical
operations are performed, stored in memories, and transferred between relevant units, so analog
signals must be converted into digital signals.

Signals spread far away in the form of waves. Waves carry messages in signals.
Signals: Acoustic signals, Seismic Signals, Electrical signals, Electromagnetic signals, Heat, Vibration, ...

Messages/Symbols: Numbers (positive, negative, integer, float, fraction), Characters, Texts, Picture,
Image, Keyboard keys

Analog signals: These are signals whose amplitude, frequency and phase change over time.
X(t)=A(t)*Sin(wt+d(t));

« w=2nf, f: frequency (Hz=1/sec), ¢: phase (degrees or radians), A: Amplitude (unit, volt, ampere)

Classification of signals

Signals are basically classified into two different
types as follows.

» Continuous time signals, Analog signals

» Discrete (Ayrik) time signals: It is the name
given to the output signal obtained by
measuring the input value at certain intervals
or levels. The discrete-time signal is derived
from the input signal by the sampling process.
Samples taken from the discrete-time signal are
converted into a digital signal by quantization.

x(1) = cos(r)
.

:u:[t]f

1]

Analog to Binary Signal

* A voltage below the threshold
e Off (0)

* A voltage above the threshold
 On (1)

Voltage

10 volts

ON

Threshold

OFF

QO volis

T

4
T2

Voltage

10 volts

ON

Threshold

OFF

Q volis

T e e T T T

— el o o o e R R s R

T

§
T2
Time ———

Analogue and Digital Signals

 Calculation with numbers is usually done in base 10 arithmetic
* Easier to effect machine computation in base 2 or binary notation

* We can also use base 2 or binary notation to represent logic values: TRUE
and FALSE

* Manipulation of these (digital) logic values is subject to the laws of logic as
set out in the formal rules of Boolean algebra

* An analogue signal can have any value within certain operating limits

* For example, in a (common emitter) amplifier, the output (O/P) can have
any value between Ov and 10v.

* A digital signal can only have a fixed number of values within certain
tolerances

Analogue Signals

* The amplitude is defined at all moments in time

Amplitude

First step of sampling: Obtain a discrete signal from
analogue signal

* |tis a sampled version of the analogue signal

* Only defined at certain discrete times

e DISCRETE TIME SIGNAL

* A digital signal is a sampled version of the analogue signal

* Analog signal sampling interval=1/fmax, [sec]. Here fmax=maximum frequency of the
analog signal.

Amplitude

The second step of sampling: Quantization

 The amplitude may also be restricted to take on discrete values only

In which case it is said to be quantized

Every level of amplitute represent 8 bits binary numbering system.

There are 278 levels in an analogue signal.

Quantization introduces errors which depend on the step size or the resolution

Signals (voltages or currents) which are samples and quantized are said to be DIGITAL

They can be represented by a sequence of binary numbers
Amplitude

The third step of sampling: Encoding

The messages produced by all the components that make up the universe are transmitted via analog
signals; In this way, they are in interactive communication with each other.

While the analog signal is converted into a digital signal, samples are taken from the amplitude and
phase values at certain time intervals (sampling frequency). This process is called the sampling function.
When sampling, the sampling frequency must be greater than or equal to twice the maximum frequency
of the analog signal.

An analog signal has a lot of frequencies. Also, there are maksimum and minumum frequency.
Bandwidth, BW: fmax — fmin. Sampling frequency, fs >= 2* BW >= fmax

The values of the samples taken from the analog signal are assigned to discrete values within the
amplitude scaling range. This process is called quantization. During this assignment process,

guantization errors occur depending on the sampling time interval, quantization values, translation and
resolution.

Representing discrete values with a certain number of binary number systems is called encoding in the
binary number system. Each discrete amplitude value is represented by a certain number of binary (0/1)
numbers. Thus, digital signals are obtained. For example, 8 bit can be taken.

Digitization of analog signal

PCM encoder

Quantized signal

N

Analog signal

> Sampling "

Quantizing I7_>‘

Encoding

1T1T+++-11T00

PAM signal

Digital data

The values of the samples taken from the analog signal are assigned to discrete values in the amplitude scaling
range. This process is called quantization. During this assignment process, quantization errors occur depending on
the sampling time interval, quantization values, translation and resolution.Representing discrete values with a
certain number of binary number systems is called encoding in the binary number system. Each discrete amplitude
value is represented by a certain number of binary (0/1) numbers. Thus, digital signals are obtained.

Noise on Transmission

* When the signal is transferred it will pick up noise from the environment
* Even when the noise is present the binary values are transmitted without error
* Recovery - Filtering

Voltage Voltage
10 volts 10 volts

ON ON

Threshold Threshold f = = = = = ;e ;e e e o e e e e e e e e e e e e e e e e e i i i i o o

OFF OFF

0O volts | i 0 volts }

Time - Time -

Nyquist Sampling Theorem

When an analog signal is converted to digital signal and trasfered then converted back to an analog
signal, how can obtain the same analog signal. The sampling frequency must be equal to or greater than
wice the bandwidth of the signal in order to obtain the same signal.

fs > 2% max, if fmin=0
f. > 2*BW

Here fs is the sampling frequency and fmax is the maximum frequency in the signal; BW is the bandwidth
of signal. BW=fmax — Tmin.

Frequency is the number of periods in one second in an analogue sigal. Frequency is also the number of
vibration in an one second. f=1/T. T: period [second], f: frequency [Hz=1/second]In telephone
communication, bandwidth is B= 4KHz (Understanding, Recognition, Feeling) and fs=2*B. Then the
sampling interval is T=1/8KHz=125microseconds.

Example

F1=4KHZ, f2=3200Hz, f3=6KHz, f4=200Hz, f5=8KHz, f6=10KHz
Find bandwidth (BW), find fmin and fmax. Note: you must conert all units to basic unit.

F1=4000Hz

F2=3200Hz

F3=6000Hz

F4=200Hz

F5=8000Hz

F6=10000Hz

Fmin=f4=200Hz

Fmax=10000Hz
BW=fmax-fmin=10000Hz-200Hz=9800Hz

The Sampling

Sampling is converting a continuous time signal into a discrete time signal

Sampling is usually done at equal time intervals; This interval is called the samplin%inter_val. The
reciprocal of the sampling interval is called sampling frequency or sampling rate. The unit of sampling
rate is Hz.

In accordance with the sampling theorem, telephone voice signals frequency ranges from 300 Hz to
3400 Hz. It is taken as 4KHz, the sampling frequency is taken as greater than or equal to 8000 Hz.

If 8000 samo‘oles are taken from an analog signal at equal intervals per second and one sample is
represented by 8 bits, how many bits are taken per second? 8000 x 8=64 000 bit/sec=64Kbit/sec.

Minimum capacity of a channel in data communication = 64Kbit/s.
If each sample is represented by 8 bits, the number of sampling intervals (Quantization) is 28 = 256.
256 quantization ranges (layers) are obtained.

After the sound waves are converted to an analog signal, a sample is taken at 125 psec. Sampling
interval, T=1/8000= 0.000125 sec. = 125 ps, where T is the sampling interval.

SANMPLE HEIGHT

SAMPLE HEIGHT

| TIME

l
! ! !
IDEAL

SAMPLING

AAL O
SIEMAL

ldeal Sampling and Aliasing

Sampled signal is discrete in time domain with spacing T,

Spectrum will repeat for every f,. Hz

Aliasing (spectral overlapping — Loss of an analog signal within another analog signal) if f,
is too small (f, < 2f,,)

* Nyquist sampling rate f, = 2f

Generally oversampling is done = f, > 2f

Lifecycle from Sound to Digital to
Sound

Inside Cormputer |

Source: http://en.wikipedia.org/wiki/Digital_audio

Digital Design and Boolean Algebra

Fundamentals of Digital Logic

A binary number system is used to represent digital logic values: 1/0 (True/False, Good/Bad, Day/Night,
0V/5V)

Mathematical operations of digital logic values are governed by the laws specified in the rules of Boolean
algebra.

The mathematical inputs and outputs of the laws specified in the rules of Boolean algebra are represented
by the binary number (1/0) system.
Logical gates that make up the hardware of computer systems

* AND, OR, NOT, NAND, NOR, XOR, ...

Logic gates are created using transistors.
* NOT gate can be implemented by a single transistor
* AND gate requires 3 transistors

Transistors are the basic circuit elements of computer systems.
e Pentium consists of 3 million transistors
* Compag Alpha consists of 9 million transistors
* Now we can build chips with more than 100 million transistors

Design Hierarchy

Many digital systems can be divided into three design levels that form a well-defined
hierarchy:

* The Architecture Level: High-level concerned with overall system management

The Logic Level: Intermediate level concerned with the technical details of the system

The Physical Level: Low level concerned with the details needed to manufacture or
assemble the system

We have already studied the architecture level

Now we will address the logic level

At the logic level, there are two classes of digital system
* Combinational - digital systems without memory
e Sequential - digital systems with memory

Boolean Algebra (Mantiksal devre)

Aa logic variable x can have only one of two possible values or states
* x=TRUE
* x = FALSE

In binary notation, we can say

 x=TRUE=1

* x=FALSE=0

* This is called positive logic or high-true logic

Electrically, — 1 is represented by a more positive voltage than zero and — 0 is represented by zero volts
e x=TRUE=1=5volts
 x=FALSE =0 =0 volts

Boolean Algebra

Sayi sistemi, ikili oldugundan tum degiskenler O ya da 1 degerini alir.

Ve (*), veya (+), degil (tersi) kavramlari Gzerine oturmaktadir. Aritmetiksel islem yoktur.

* Veya
e Oveya(+)O

e lveya(+)O

Oveya (+) 1

1veya(+)1

- n nn
B R RO

* Ve

e o o o
[EEY

<

M

“x
= OFr O
O OO

Degil
e Otersil
e 1tersiO

Boolean Algebra Theorems

1. a) a+b=b+a Commutativity
b) a-b=b-a
2. a) a+b+c=a+(b+c) Merger Feature (Birlesme)
b) a-b-c=a-(b-c)
3.a) at+b-c= (a+b) -(a+c) Dispersion Feature (Dagiima)
b) a:(b+c)=a'b +a-c
c) a(b+c)=ab+ac
4. a) a+a=a ldempotency(Degiskende Fazlalik Ozelligi)
b) a-a=a
5. a) a+a.b=a Swallowing Feature (Yutma)
b) a-(a+b)=a

6. a) (a)*n =a Redundancy Feature in transaction (islemde

Fazlalk Ozelligi)
b) (a xn) =a

7.a) (a + b)=a-b De Morgan Rule

8. a) 0+a=a Ineffectiveness Feature (Etkisizlik Ozelligi)
b) 1-a=a
9. a) a+a =1 Fixed Feature (Sabit Ozelligi)
b) a-a =0
10. a) 1+a=1 Devourer Fixed Feature (Yutan Sabit
Ozelligi)
b) 0-a=0
11.a) (a+b)-b=a-b
b) a-b +b=a+b
12.a) a+b - a +c - b+c=a+b -(a +c)
) b) a-b+a -c+b-c=a-b+a -c
13.a) a+b - a +c =a-c+a b
b) a-b+a -c= a+c -(a +b)

14.a) f a,b,c,d,--- =[a+f(0,b,c,d,-*)]-[a +f(1,b,c,d,)]
Shannon Teoremi

b) f ab,cd,--=af1,b,cd, - +[a-f(0,b,c,d,,)]

e Boolean Algebra: rules for rewriting Boolean functions - The 12 Rules of Boolean Algebra

e Useful for simplifying Boolean functions * A+0=A
e Simplifying = reducing gate count, reducing gate “levels” cA+1=1

e Rules: similar to logic (0/1 = F/T) cA°0=0
e Identity: A1 =A, A+0=A s A1=A
e 0/1: AO=0,A+1 =1 s A+A=A
e Inverses: (A") = A s A+A=1
e Idempotency: A A=A A+tA=A s ACA=A
e Tautology: AA'=0, A+A' =1 e A*A=0
e Commutativity: AB = BA, A+B = B+A « A=A
* Associativity: A(BC) = (AB)C, A+(B+C) = (A+B)+C s A+AB=A
* Distributivity: A(B+C) = AB+AC, A+(BC) = (A+B)(A+C) s A+AB=A+B

DeMorgan’s: (AB) = A'+B’, (A+B)’' = A'B’ * (A+B)A+C)=A+BC

Rules and Laws of Boolean Algebra

e Operations on Boolean variables are defined by rules and laws, the most important of which
are presented here

e Commutative Law
A.B=B.A
A+B=B+A

* This states that the order of the variables is unimportant

* Associative Law
A.(B.C)=A.(B.C)
A+(B+C)=A+(B+C)

* This states that the grouping of the variables is unimportant
* Distributive Law: A.(B+C)=A.B+A.C
* This states that we can remove the parenthesis by ‘multiplying through’

* The above laws are the same as in ordinary algebra, where ‘+’ and *’ are interpreted as
addition and multiplication

Rules and Laws of Boolean Algebra

* Basic rules involving one variable:

A+0=A A.0=0
A+1=1 A.1=A
A+A=A A.A=A

A+A =1 A.A=0
e |t should be noted that A" = A

* An informal proof of each of these rules is easily accomplished by taking advantage of the fact
that the variable can have only two possible values

* Forexample,rule2:A+1=1
fA=0then0+1=1
fA=1thenl+1=1

Rules and Laws of Boolean Algebra

Basic rules of single variable

* A proof of each of the rules and laws of Boolean algebra can be easily proved by taking
advantage of the fact that a variable can only have two bits (0/1) of value.

* Note: A=0or 1.

* A+A+A+A+A....+A+1=1; In the OR gate, if any of the inputs is 1, the output is one. The
other method of proof is to search for accuracy by giving values of 1 and 0.

e A+A+A+ ...+ A=A (Why? Bivariate O or 1 inputs are available)
« AAA... A=A

— IfA=0then0+1=1

— IfA=1thenl1+1=1

It should be noted that A = A

In logic circuits and mathematics, there are two numbers: 0 and 1.

Question: Perform the following operation using Boolean algebra. A=9, A+1="
a)0 b)1 c)10d) 8 e)none

Question: What values does A take in Boolean algebra?
a)0b)lc)0/1d)0,1,2, ..., 9 d)Any value e)No value

Question: If A=1 in Boolean algebra, A+A+A+A+A=?

A)1 B)O C)A D)5 D)5A E) None

Question: In Boolean Algebra, A*A*A*A=? A)A B)A"N4

‘s Laws

DeMorgan

Rules and Laws of Boolean Algebra

De Morgan's Laws are particularly useful when dealing with NAND and NOR logic.

A+B=A_.B A B=A+B

Some useful theorems

A+A.B=A.(1+B)=A, 1+4B=1

A+A’.B=(A+A’).(A+B)=A+B, A+A'=1

A.B+AB’=A(B+B’)=A, B+B’=1

A.(A+B)=A.A+AB=A+AB=A(1+B)=A, A.A=A, 1+B=1

A(A'+B)=A.A’+AB=AB;A.A’=0

(A+B)(A+B’)=AA+AB’+AB+BB’=A+AB’+AB=A(1+B+B’)=A; A.A=1, B.B’=0, 1+B+B’=1
A+ A.B=A+B

The result of logical operations is always 1 or O.

ea+a+a+a+...+a=a
e 3*a*a* *a=a
e 1+a+b+c+ ... + z=1

e ab’c + ab’c=ab’c; The sum of similar expressions always equals a
similar one.

Boolean Algebra

* Developed by George Boole in 19th Century

* Algebraic representation of logic
* Encode “True” as 1 and “False” as 0

And Or
m A&B =1 when both A=1 and B=1 = A|B =1 when either A=1 or B=1
&[0 1 | |0 1
O|O0O O O|0 1
1[0 1 1 (1 1
Not

Exclusive-Or (Xor)

m A”™B =1 when either A=1 or B=1, but not
—_ both

O|1 ~10 1
110 OO0 1
111 O

m ~A=1when A=0

Gates and Transistors

oo
Vee = Re ¥ 1c + Vg

gm V 35 :R3$13+V3£

+ IC:;S*IE

& —!"-E' | W E
W B W’H -+ _ _ VCC
YWEE E IC‘ SAT R
y :
I — VBB VBE
g R
B

Ve =0V ya dal, =1, sar 3 Saturasyon V.. = 0V Olur

I, =04 ise :Kesmede I, =1.=04 Olur

VCE=VCC kesme durumunda

Transistor is a circuit element produced in semiconductor
technology that controls the flow of electrons.

+VCC
+VCC
+VCC
VOU'[
V4
Collector
VOU‘ hd ¢ VOUt
Vin P {) \ {) \P
Base Emitter
(a) (b) (c)

(a) A transistor inverter.
(b) A NAND gate.
(c) A NOR gate.

Transistor

* Semiconductor circuit element that controls the flow of electrons.

* Subatomic particles (Quantum Mechanics): Proton, Neutron, Electron, Phototron

e Current is created from the flow of electrons.

* The transistor memory element stores the bit (0/1) state on it. Performs Switching. Or
it strengthens the signal.

* Transistor is the most used electronic circuit element in the world.

 The smallest basic electronic circuit element of a microprocessor is the transistor.

 The CPU's basic function cycles occur at a dizzying speed as transistors turn on and off
millions or even billions of times per second..

Dogruluk tablosu:
A[BJ|OR | AND| NOT | NOR | NAND EXOR
A+B| A*B | A | (A+B) | (A"B) | (A)"B+A~(B")
oo o 0 1 1 1 0
0|1 1 0 1 0 1 1
1|0 1 0 0 0 1 1
1|1 1 1 0 0 0 0
VE KAPISI DEGIL KaPISI
A~ Singesi —55—¢ Simgesi - - VE DEJIL KAPLR
& 5 Volt o A——o-c Simgesi A% c Simges
- Jjif=i—fa]
A Girig & .
& Cikag A A
Giriglet) . I¢ Y apis c B ';-Ckl?
L I vapis 5 Volt Cikag Girigler Gitizle
5 Volt i Yapis 5 Wolt Ic Y ops
Formiiller 0 Degeri Verildiginde 1 Degeri Verildiginde Sadelegtirmeler
A.0=0 A=0ise,0.0=0 A=1lise, 1 .0=0 (A+B)=(B + A)
A 1=A A=0ise,0.1=0 A=1lise, 1. 1=1 A+B)+C=A+B+C)=A +B+C
A+0=A A=0ise,0+0=0 A=1lise,1+0=1
A+1=A A=0ise, 0+1=1 A=1lise, 1+1=1 (A.B).C=A.(B.CO)=A.B.C
A_A=A A=0ise,0._0=0 A=1lise, 1. 1=1 A+B).A+O)=A+B.C)
A+A=A A=0ise,0+0=0 A=lise, 1+1=1 S RS
A_A=0 A=0ise,0.1=0 A=1lise,1.0=0 fﬁ*3é=f’iﬂ-9
A+A= A=0ise,0+1=1 A=1lise,1+0=1 (A.B)=(@B.A)
(A'.BY+(A.B)=(A©B)
(A=A A=0ise, A'=1,(A)Y =0 A=1lise, A'=0,(AY =1

(A.By=A"+B

Digital Logic Basics

« Hardware consists of a few simple building blocks
« These are called logic gates
 AND, OR, NOT, ...
 NAND, NOR, XOR, ...

« Logic gates are built using transistors
 NOT gate can be implemented by a single transistor
« AND gate requires 3 transistors

» Transistors are the fundamental devices
* Pentium consists of 3 million transistors
« Compag Alpha consists of 9 million transistors
« Now we can build chips with more than 100 million transistors

Temel Kavramlar -1

« Number of functions
* With N logical variables, we can define
22N functions

 Some of them are useful

« AND, NAND, NOR, XOR, ...
 Some are not useful:

e Output is always 1

e Output is always 0

* “Number of functions” definition is useful in proving completeness
property

Temel Lojik Kapilar -1

« Simple gates
« AND
« OR
« NOT

» Functionality can be expressed by a truth table
» A truth table lists output for each possible
input combination
* Precedence
« NOT>AND >OR
- F=AB+AB

= (A(B)) +((A) B)

Gate

NAND

AND

NOR

OR

Symbol

Truth-Table
X Y z
0 0 1
0 1 1
1 0 1
1 1 0
X Y Z
0 0 0
0 1 0
1 0 0
1 1 1
X Y r
0 0 1
0 1 1]
1 0 0
1 1 0
X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

Expression

1=X+Y

1Z=X+Y

Temel Lojik Kapilar -2

Additional useful gates
 NAND
« NOR
« XOR

NAND = AND + NOT
NOR = OR + NOT
XOR implements exclusive-OR function

NAND and NOR gates require only 2
transistors

« AND and OR need 3 transistors!

XOR
(XeYv)

XNOR

X DY)

Y

X
Y

3 >

-

== | - | S| S|

- o - | =

(=T = N ' T |

= = la|la| x

alo(la|lol| =

= o || =] M

Z=XY+XY
X or'Y but not both
("inequality”, "difference")

Z=XY+XY
X and Y the same
("equality™)

Widely used in arithmetic structures such as adders and multipliers

Basic Logic Functions

AN @ True only if all input conditions are %:)7

true.

@@ True only if input @*

conditions are true.

N@T Indicates the condition. 4>°*
ﬁ{}

Basic System Functions

And, or, and not elements can be combined to form various logic
functions. A few examples are:

The comparison function s s

Basic arithmetic functions

Adder

A
—
Two >
binary
numbers
L B

Sum

Cout — Carry out

Carry in — C;,

Logic Functions

 Logical functions can be expressed in several ways:
 Truth table
 Logical expressions
« Graphical form

« Example:
« Majority function
« Qutput is one whenever majority of inputs is 1
« We use 3-input majority function

Logic Functions

3-input majority function » Logical expression form
F=AB+BC+AC

A B C =

0 0 0 0 A B C

0 0 1 0 | —

0 1 0 0 s)

0 1 1 1 |

1 0 0 0 I ——) >
1 0 1 1

1 1 0 1 T \

1 1 1 1 |

1.

2.

3.

4.

5.

6.

7.

Boole Cebri Teoremleri

a) a+b=b+a Degisme Ozelligi

b) a-b=b-a

a) a+b+c= a+b +c=a+(b+c) Birlesme Ozelligi
b) a-b-c=a-b -c=a-(b-c)

a) a+b-c= a+b -(a+c) Dagilma Ozelligi

b) a- b+c = a-b +(a-c)

c) a(b+c)=ab+ac

a) a+a=a Degiskende Fazlalik Ozelligi

b) a-a=a

a) a+a.b=a Yutma Ozelligi

b) a-(a+b)=a

a) (a) =a islemde Fazlalik Ozelligi

b) (a)=a

a) (a+b+c+-+:) =a b -c ---- De Morgan Kurali
b) (a-b-c-++*)=a +b +c +-+-

8. a) a+a =1 Sabit Ozelligi
b) a-a =0
9. a) 0+a=a Etkisizlik Ozelligi
b) 1-a=a
10. a) 1+a=1 Yutan Sabit Ozelligi
b) 0-a=0
11. a) (a+b)-b=a-b
b) a-b +b=a+b
12.a) a+b - a +c - b+c = a+b -(a +c)
b) a-b+a -c+b-c=a-b+a -c
13.a)a+b - a+c=a-c+a-b
b) a-b+a -c= a+c -(a +b)
14.3) f a,b,c,d,--- =[a+f(0,b,c,d,-*)]-[a
+f(1,b,c,d,:+-)] Shannon Teoremi
b) f a,b,c,d,--=a-f 1,b,c,d, - +[a
-f(0,b,c,d,)]

- The 12 Rules of Boolean Algebra
*A+0=A
*A+1=1
*A'0=0
*A'1=A
*A+A=A
*A+A=1
*A"A=A
*A-A=0
« A=A
*A+AB=A
+A+AB=A+B
*(A+B)A+C)=A+BC

Sta dard F% o ms

. Suns o Pradict —
um OT Froaucts X AB(C—I—C)

o . \ _ = AB(D)
F = ABC + ABC +~ ABC + ABC —

v = AB
» AC(B + B)

= AC
> BC(A+ A)

= BC
F = BC(A+A) + AB(C+C) + AC (B

F = BC + AB+ AC

Boolean Algebra

* We can use Boolean identities to simplify the function:

as follows: — .=
F((X,Y,Z)= (X +Y)(X + YY) (XZ2)
(X + ¥Y) (X + Y) (XZ) Idempotent Law (Rewriting)
(X + ¥) (X + YY) (X + Z) DeMorgan's Law
(XX + XY + XY + YY) (X + Z) Distributive Law
((X + YY) + X(Y + ¥)) (X + Z) | Commutative & Distributive Laws
((X + 0) + X(1)) (X + Z) Inverse Law
X(§ + Z) ITdempotent Law
XX + XZ Distributive Law
0O + XZ Inverse Law
XZ ITdempotent Law

Logic simplification

* Example: * Simplify A+ AB+ABC
e Z =A'BC+ AB'C' + AB'C + ABC' + ABC - '
= A'BC + AB'(C’ + C) + AB(C' + C) distributive DeMorgan s theorems.
=A'BC+ AB’ + AB complementary ¥5)
= A'BC+ A(B' + B) distributive A+4B +_A BC
=A'BC +A complementary A+ABC
=BC+A absorption #2 Duality A

(X oY')+Y=X+Y with X=BC and Y=A
» Simplify AB + A(B + C) + B(B + C)

AB+AB+ AC+ BB+ BC

AB+AC+B+BC
AB+B+ AC

B+ AC

Y =AB.C+ABC+B.C+AB

Using Boolean algebra:

Y=ABC+ABC+B.C+AB

Y = AB.C+ ABC + A.B.C + A.B.C + A.B.C + A.B.C (Expanding all terms by multiplying by

l.i.e. (A + A))
Y =A.B.C + E.(A.C + A.C+ AC+ AC + ZE} (Take out the common factor)
Y =A.B.C + g(A(C + E)+ H(E +C + E)) (Group terms and take out the common factors)
Y = AB.C+Bl4+A4) (Simplify)

Y =AB.C+B

Sequential Logic

* Has memory; the circuit stores the result of the previous set of inputs.
The current output depends on inputs in the past as well as present
Inputs.

o The basic element in sequential logic is the bistable latch or flip-flop, which acts
as a memory element for one bit of data.

* D FF karakteristik tablosu: | Q() Qt+1) | D | Tglem Karnaugh diyagrami yardimiyla aymi denklemleri bulabiliniz:
o 0 a Reset
0 1 1 Set D,=Q,Q, X' +Q, Q,X
1 0 0 Reset _ .
1 1 1 Set Dn =X+ |::11 D|:|
Z=0,Q, X
Simdiki Gelecek | Flip flop
durum | Giris | durum girigleri Cikis
Q Qo X 4@ Gl D Do) 2
o o[l o]o oo o 0 o
0 o] 1 Jo 1]o 1 0
o 1|l o]lt1 of1 o 0 Qu
¥
0 1] 1]Jo 1]o 1 0 01
1 ol o |1 1|1 1 0 00
1 0| 1 Jo 1]o 1 0 X
1 1| oo o]o o 0
1 1] 1t Jo 1]o 1 1
21

Binary Logic
< Binary logic consists of binary variables and a set of logical operations.

& The variables are designated by letters of the alphabet, such as 4. B, C. x. v, z. etc,
with each variable having two and only two distinct possible values: 1 and 0.

& There are three basic logical operations: AND, OR, and NOT.

AND: represented by a dot or by the absence of an operator.
* xy=zorxy=czisread “x AND yis equal toz.”
« -=11fand only if x = 1 and y = 1; otherwise = = 0. (Remember that x, y, and - are
binary variables and can be equal either to 1 or 0, and nothing else.)
OR: represented by a plus sign.
» y +y=—cisread “x OR yis equal to z,” meaning that z= 1 ifx=1orify=1 orif
bothx=1and y=1.
» Ifbothx=0and y=0, thenz=
NOT: represented by a prime (sometimes by an overbar).
» x' =z (orx=72)i1sread “not x 1s equal to z.” meaning that = 1s what x is not.
* Ifx=1,thenz=0. butifx=0, thenz=
» also referred to as the complement operation, since 1t changesa 1 toOanda 0 to 1.

Logic Gates

e Logic gates: implement Boolean functions
e Basic gates: NOT, NAND, NOR
e Underlying CMOS transistors are naturally inverting (@ = NOT)

NOT (INV)

A Po-n

N
A

AND

B —

Y

(AB)’

e NAND, NOR are "Boolean complete”

BUF

A‘D‘A

AND3

A —
B—

C

-

AND

A—

B—

-

ANDNOT

AB

A_ ?
4

A
B

A+B

NOR
=

XOR

2 AD—ABWA’B
—

Basic Logic Gates

& Graphic Symbols and Input-Output Signals for Logic gates:

X

I=XxX"Yy X Z=x 1ty
}I‘

(a) Two-input AND gate (b) Two-input OR gate

v

xgbo—x'

(c) NOT gate or inverter

» Input-Output signals for logic gates X 0 1 0 0
y 0 1 1 0
R 0 1 0 0
— AND:x -y
OR:x +y 0 1 1 0
NOT: x’ 1 0 i 1

Temel Lojik Kapilar -1

. Simple gates Gate Symbol Truth-Table EXxpression
« AND X Y Z
e OR NAND X — z E : ::
- NOT Y o T Z=X+Y
1 1 0
» Functionality can be expressed by a truth table —
- Atruth table lists output for each possible oo o
input combination AND ;‘])_ Z o 1 1 o Z=Xey
- Precedence BRI o
« NOT >AND > OR
- F=AB+AB Ny 1
_ NOR 7Z=X+Y
= (A(B) +((A) B) ﬂ =z 0o [1] o ‘
Y 1 0 0
1 1 0
L L X Y Fa
X 0| 0 | 0O
— — OR y z o 1 | 1 LZ=X+Y
1 0 1
1 1 1

Symbols and functional behavior for Logic Gates

NOT NAND NOR AND OR
A A A A
B | B B | B
Al X AlB]X AlB]JX AlB]|X AlB]JX
o1 ool 1 olo]1 olo]|o olo]|o
1 1o o1 1 ol1]o ol1]o o 1] 1
1101 11o0]o0 1{olo 1 o1
1110 1110 111 1 111 1

(a) (b) (c) (d) (e)
AND Gate: If any of the inputs is O, the output is O. If all inputs are 1, the output is 1.
OR Gate: If any of the inputs is 1, the output is 1. If all inputs are 0, the output is O.
NOT Gate: transposes the input.

A logic gate is an idealized or physical circuit that implements a Boolean function, that is, it performs
a logical operation on one or more logic inputs and produces a single logic output.

Logic AND Gates

* Logic gates are switching circuits that perform certain simple operations on binary signals

* These operations are chosen to facilitate the implementation of useful functions

The AND Gate

The AND Gate - Determine the output waveform when the input waveforms A and B
are applied to the two inputs of an AND gate

A and B are variables and note the use of the . to denote AND

Girig dalga formlari A ve B bir mantik kapisinin iki girisine uygulandiginda ¢ikis dalga
formu belli ise bu kapinin tirinu belirleyiniz. (AND Kapisi)

Logic OR Gates

A and B are variables and note the use of the + to denote OR

The OR Gate

The OR Truth Table

Logic NOT Gates

Note the use of the bar over the A to denote NOT

The NOT Gate

A—>—f=A

The NOT Truth Table

Logic Gates

Sometimes a ‘bubble’ is used to indicate Inversion

In fact it is simpler to manufacture the combination NOT AND and NOT OR than it is to deal
with AND and OR

NOT AND becomes NAND
NOT OR becomes NOR

sl)

The NAND Gate The NOR Gate

A f= B f=A+B
B

f= A NOR B

Logic Gates

Toplama Karsilastirma

The EXCLUSIVE OR Truth Table The EXCLUSIVE NOR Truth Table

f= A XOR B f= A XOR B

The XOR Gate

A f= AD@B

This is called the equivalence gate

XOR gates are used in comparison and arithmetic addition operations.If all inputs are equal (0 or 1) and the output is zero, it
is an XOR gate; if the outputis 1, it is an XNOR gate.

The XOR — XNOR Gates

The EXCLUSIVE NOR Truth Table

. The EXCLUSIVE OR Truth Table f=NOT (A XOR B)
f=AXORB f= A XOR B
=A®B
= AB + AB

f= A XOR B

The XOR Gate

Asz A®B
B

Minterm

Ornek:

¢ Sound the alarm when A=1 and B=1 or C=1 and D=1.
F=AB+CD

In case of AB: m12, m13, m14, m15In case of CD: m3,m7,m11, m15

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

el e == == = R R e i e R i Y [y
HOMROHROHRHOHHORO OO

Multiple-Input Gates

A F=ABC
B_
C_

on k>

G=A+B+C+ D

(a) Three-inpui AND gate (b) Four-input OR gate

F = (4B)(CD) = ABCD

- F
R
-

Inverting Gates
NOT + AND = NAND

Py F “
o ——> o

NOT + OR = NOR

A F | A F
B [B
Exclusive OR/NOR Gates
A B | F
1 F 000 A
B 01 |1 B
101
1110

- S

S b |y

- S| L
'—'="-'=’UU

el — NI

—o = Oy
_~o o mny| ®

Truth Table of Logic Operation

Truth Tables of Logical Operations

AND OR NOT
X ylx-y X V| Xx+y X | x
O O 0 O O 0 0|1
0 1 0 0 1 1 110
1 0] 0O 1 0 1
1 1 1 1 1 1

A logic variable 1s always either 1 or 0.

LOgiC Functions » Logical functions can be expressed

In several ways:

_ o _ — Truth Table

Truth Table: 3-|nput majority function — Logical Expression
— Impression
A B C F
e Logical expression form
c o0 0 |0 F=ABC+AB'C+ABC+ABC
0 0 1 0 A B C F=AB+BC+AC
Iy * The sum of the variables in the
0 1 0 0 ° D— given equations gives the number
0 1 1 1 of inputs.
?) F * In logic gates, the result of a
1 0 0 0 T jL} logical equationis 1 or O.
1 0 1 1 T —
Ti.

1 1 0 1
1 1 1 1 If the number of entries is m, how many different states are there? There are

S=2"m states. The reason why it has base 2 is due to the binary number system: 0
or 1, bit

Full Adder

e What is the logic for a full adder?

e Look at truth table Cl
CIAB— CO S
0O 00 —=0 O 0—0—\ S ..
0O 01 —-0 1 A . N
0O 10 —-0 1 T : A, | S
o 11—-1 o B 111 } _J|FA
1 00 —=0 1 b B .
1 01 —=1 0 lCO
1 10—-1 O
1 11—-1 1

v CO

e S=CAB+CAB'"+CA'B'"'+CAB=C~*A"B
e CO=CAB+CAB+CAB'"+CAB=CA+CB + AB

Multiplexer (mux): selects output from N inputs
e Example: 1-bit 4-to-1 mux
e Not shown: N-bit 4-to-1 mux = N 1-bit 4-to-1 muxes + 1 decoder

S (binary) I

S (1-hot)
-} T~ S (binary)
A A *
= D
B > O C— O

.
}J
-
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-

Tam toplayici (Full Adder)

* It is a combinational circuit where the carry bit at the input is added together
with two one-bit numbers.

Toplam Elde

o
g

Yanr toplayic1 — 2

(=1~

?
== oo == o o] R
ol b= Ll =]
Ll I e)
[l =2 =]

1 0
0 1
0 0 1
—_——
—_—
a . Tam c
b Toplayic out
4 e
EEE— b 01 10 b 11
00 11 00 01 10
C{n C-'n
0 0 1 0 1 0 o | O 1 0

1 1 0 1 0 1 0 1 1 1

S — ' T = Cyp@b + b + Cyyab + Tryab = Ty (@b + ab) + o (ab + @) = T = a(F(H)Cin
Tam toplayict devresi Cout = Cipb + Cpa + ab

MULTIPLEXER

4-to-1 Multiplexer

Select
S S
0 0
0 1
1 0
1 1
lo N
l, N
l, :>
15 [
N

o]

m|

GND

Multiplexers

Example chip: 8-to-1 MUX

1 [~ 116 Vec
2[| 115 I,
3[[114 I5
4[] [113 Ig
74151
50] [112 I,
6 [] [111 Sy
7 [] [110 S,
8 [19 S,

(a) Connection diagram

S, S1 So

X C 2
0| ©

(b) Logic symbol

Multiplexers

An eight-input multiplexer circuit.

>COI

Loy
kﬁ |]

Control input

Data in —

S

DeMux
o0 0 of

Demultiplexer (DeMUX)

o
1>

1-2 Decoder

A | D, Dy
o 1 0
1| o 1

2-to-4 Decoder

Ag
A Ag | D Dy Dy D3
Ay
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

(a)

Do = A1 Ay

D, = A; Ap

D, = A; Ag

Ds = A1 Ay

b

(b)

3-t0-8 Decoder

* Decoding circuit is used to select

memory.

100000001

-
e

I

I
5]

|

pel
L

o
&
Il
=
P
=
b=
=

O
I
=
(%
=
p
=

M

D? = "':"-2-'“-1-'“--3

Decoders

* Decoder selects one-out-of-N inputs

1 Lo
0O 0| 0O 0 0 1 I,
O 110 0 1 O
1 0/0 1 0 O Io
1 111 0 O O
Oy
Encoded — 1 % O, — Decoded
datain — 1 E O, — data out
O, —

VY

Comparators

A simple 4-bit comparator.
Used to implement comparison operators (=, >, <, >, <)

EXCLUSIVE OR gate

ho :)D/
Bo

ST) >

B+

) >—

B>

2) O

Bs

Sirall Mantik (Sequential Logic)

* Sequential logic has memory; The circuit stores the result of the
previous set of inputs. The output depends on current inputs as well
as past inputs.

* The basic element in sequential logic is the two-state latch or flip-flop
circuit that serves as the memory element for one bit of data.

Sequential Logic (Bellek 6zelligine sahiptir.)
| e

X

| | | \
1
0

It is triggered by the rising edge of the Clok and the output takes the input value. Its state
does not change until the next clok rising edge arrives. This is called memory feature.

The D flip-flop

Input sampled at clock edge
* Rising edge: Input passes to output
e Otherwise: Flip-flop holds its output

Flip-flops can be rising-edge triggered or falling-edge triggered

On the rising edge of the clok signal, the output becomes equal to
the input (Q=D). In all other cases of the clok signal, the output

Input — D Q (—
Q

remains unchanged.
The current state (Q) and the next state (D) are considered
together.
CLK |
ol L.

Qs

State Diagram

011

The number of binary circuits is found
according to the current and next states
Number of pairs = 3 pieces. Because in the
State diagram, all states vary between 0 and 7.
Total number of states = 8 = 2/3.

The current states are found at the Q outputs
of the D-binary circuit. The next situation is at
the D inputs of the D-binary circuit.

When the D-binary circuit is triggered by the
rising edge of the Clok, the Q-outputs become
equal to the D-inputs.

Creating the State Table and reducing it with the help of Karnaugh diagram

Current situation

Next situation

Su anki durum Girig Bir sonraki durum
Q2 Ql Qo C D2 01 oo
0 o] 1] 0 o o
0 0 0 1 0 0 1
0 o 1 1] 0 o o
0 0 1 1 0 1 0
0 1] 1] 0 o o
0 1 0 1 0 1 1
0 1 1 1] 0 o o
0 1 1 1 1 0 0
1 o] 1] 1 o 1
1 0 0 1 1 0 0
1 o 1 1] 1 1 o
1 0 1 1 1 0 0
1 1] 1] 1 1 1
1 1 0 1 1 0 0
1 1 1 1] 0 o o
1 1 1 1 1 0 0

Q.C

Q:Q 00 01 11 10
00
01 (T
1| 1 1 1)
10| =T | 1 1 | 1T
o2=
QC
Q:Qs 00 01 11 10
00 (1)
01 (1)
11| (1)
10 1)
D1=
Q.C
Q:Qn 00 01 11 10
00 /1)
01 \1/
11| /1)
10 \1)
DO=

D2 =Q2Q1" + Q2Q0" + Q1Q0C
D1=0Q2Q1Q0'C"' + Q2'Q1Q0'C+ Q2'Q1'Q0C + Q2Q1'Q0C’
DO =Q2'Q0°C" + Q2Q0°C

SUMMARY

A binary number is a weighted number in which the weight of each whole number digit is a positive power of 2
and the weight of each fractional digit is a negative power of 2.

The 1’s complement of a binary number is derived by changing 1s to Os and Os to 1s

The 2's complement of a binary number can be derived by adding 1 to the 1’'s complement.

The octal number system consists of eight digits, O through 7.

The hexadecimal number system consists of 16 digits and characters, 0 through 9 followed by A through F.

The ASCll is a 7-bit alphanumeric code that is widely used in computer systems for input/output of information.
The output of an inverter is the complement of its input

The output of an AND gate is high only if all the inputs are high

The output of an OR gate is high if any of the inputs is high

The output of an NOR gate is low if any of the inputs is high

The output of an NAND gate is low only if all the inputs are high

The output of an exclusive-OR gate is high when the inputs are not the same

